Matching Number, Independence Number, and Covering Vertex Number of Γ(Zn)
نویسندگان
چکیده
منابع مشابه
Linear Vertex Arboricity, Independence Number and Clique Cover Number
The linear vertex-arboricity of a graph G is defined to the minimum number of subsets into which the vertex-set G can be partitioned so that every subset induces a linear forest. In this paper, we give the upper and lower bounds for sum and product of linear vertex-arboricity with independence number and with clique cover number respectively. All of these bounds are sharp.
متن کاملIndependence number and vertex-disjoint cycles
In this paper we consider graphs which have no k vertex-disjoint cycles. For given integers k, let f (k, ) be the maximum order of a graph G with independence number (G) , which has no k vertex-disjoint cycles. We prove that f (k, ) = 3k + 2 − 3 if 1 5 or 1 k 2, and f (k, ) 3k + 2 − 3 in general. We also prove the following results: (1) there exists a constant c (depending only on ) such that f...
متن کاملThe augmented Zagreb index, vertex connectivity and matching number of graphs
Let $Gamma_{n,kappa}$ be the class of all graphs with $ngeq3$ vertices and $kappageq2$ vertex connectivity. Denote by $Upsilon_{n,beta}$ the family of all connected graphs with $ngeq4$ vertices and matching number $beta$ where $2leqbetaleqlfloorfrac{n}{2}rfloor$. In the classes of graphs $Gamma_{n,kappa}$ and $Upsilon_{n,beta}$, the elements having maximum augmented Zagreb index are determined.
متن کاملthe augmented zagreb index, vertex connectivity and matching number of graphs
let $gamma_{n,kappa}$ be the class of all graphs with $ngeq3$ vertices and $kappageq2$ vertex connectivity. denote by $upsilon_{n,beta}$ the family of all connected graphs with $ngeq4$ vertices and matching number $beta$ where $2leqbetaleqlfloorfrac{n}{2}rfloor$. in the classes of graphs $gamma_{n,kappa}$ and $upsilon_{n,beta}$, the elements having maximum augmented zagreb index are determined.
متن کاملBounding cochordal cover number of graphs via vertex stretching
It is shown that when a special vertex stretching is applied to a graph, the cochordal cover number of the graph increases exactly by one, as it happens to its induced matching number and (Castelnuovo-Mumford) regularity. As a consequence, it is shown that the induced matching number and cochordal cover number of a special vertex stretching of a graph G are equal provided G is well-covered bipa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2019
ISSN: 2227-7390
DOI: 10.3390/math7010049